A Glycine-Rich Bovine Herpesvirus 5 (BHV-5) gE-Specific Epitope within the Ectodomain Is Important for BHV-5 Neurovirulence

A. Al-Mubarak, Y. Zhou, S. I. Chowdhury

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

The bovine herpesvirus 5 (BHV-5) gE ectodomain contains a glycine-rich epitope coding region (gE5 epitope), residues 204 to 218, that is significantly different from the corresponding gE region of BHV-1. Deletion of the gE epitope significantly reduced the neurovirulence of BHV-5 in rabbits. Pulse-chase analyses revealed that the epitope-deleted and wild-type gE were synthesized as N-glycosylated endoglycosidase H-sensitive precursors with approximate molecular masses of 85 kDa and 86 kDa, respectively. Like the wild-type gE, epitope-deleted gE complexed with gI and was readily transported from the endoplasmic reticulum. Concomitantly, the epitope-deleted and wild-type gE acquired posttranslational modifications in the Golgi leading to an increased apparent molecular mass of 93-kDa (epitope-deleted gE) and 94-kDa (wild-type gE). The kinetics of mutant and wild-type gE processing were similar, and both mature proteins were resistant to endoglycosidase H but sensitive to glycopeptidase F. The gE epitope-deleted BHV-5 formed wild-type-sized plaques in MDBK cells, and the epitope-deleted gE was expressed on the cell surface. However, rabbits infected intranasally with gE epitope-deleted BHV-5 did not develop seizures, and only 20% of the infected rabbits showed mild neurological signs. The epitope-deleted virus replicated efficiently in the olfactory epithelium. However, within the brains of these rabbits there was a 10- to 20-fold reduction in infected neurons compared with the number of infected neurons within the brains of rabbits infected with the gE5 epitope-reverted and wild-type BHV-5. In comparison, 70 to 80% of the rabbits exhibited severe neurological signs when infected with the gE5 epitope-reverted and wild-type BHV-5. These results indicated that anterograde transport of the gE epitope-deleted virus from the olfactory receptor neurons to the olfactory bulb is defective and that, within the central nervous system, the gE5 epitope-coding region was required for expression of the full virulence potential of BHV-5.

Original languageEnglish (US)
Pages (from-to)4806-4816
Number of pages11
JournalJournal of virology
Volume78
Issue number9
DOIs
StatePublished - May 1 2004

Fingerprint

Bovine Herpesvirus 5
Bovine herpesvirus 5
Glycine
epitopes
Epitopes
rabbits
Rabbits
glycosidases
Glycoside Hydrolases
neurons
Olfactory Receptor Neurons
Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase
molecular weight
Virus Receptors
brain
Neurons

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this

A Glycine-Rich Bovine Herpesvirus 5 (BHV-5) gE-Specific Epitope within the Ectodomain Is Important for BHV-5 Neurovirulence. / Al-Mubarak, A.; Zhou, Y.; Chowdhury, S. I.

In: Journal of virology, Vol. 78, No. 9, 01.05.2004, p. 4806-4816.

Research output: Contribution to journalArticle

@article{ed13564c8e4c4d1ba12fcebe5ac1d3b1,
title = "A Glycine-Rich Bovine Herpesvirus 5 (BHV-5) gE-Specific Epitope within the Ectodomain Is Important for BHV-5 Neurovirulence",
abstract = "The bovine herpesvirus 5 (BHV-5) gE ectodomain contains a glycine-rich epitope coding region (gE5 epitope), residues 204 to 218, that is significantly different from the corresponding gE region of BHV-1. Deletion of the gE epitope significantly reduced the neurovirulence of BHV-5 in rabbits. Pulse-chase analyses revealed that the epitope-deleted and wild-type gE were synthesized as N-glycosylated endoglycosidase H-sensitive precursors with approximate molecular masses of 85 kDa and 86 kDa, respectively. Like the wild-type gE, epitope-deleted gE complexed with gI and was readily transported from the endoplasmic reticulum. Concomitantly, the epitope-deleted and wild-type gE acquired posttranslational modifications in the Golgi leading to an increased apparent molecular mass of 93-kDa (epitope-deleted gE) and 94-kDa (wild-type gE). The kinetics of mutant and wild-type gE processing were similar, and both mature proteins were resistant to endoglycosidase H but sensitive to glycopeptidase F. The gE epitope-deleted BHV-5 formed wild-type-sized plaques in MDBK cells, and the epitope-deleted gE was expressed on the cell surface. However, rabbits infected intranasally with gE epitope-deleted BHV-5 did not develop seizures, and only 20{\%} of the infected rabbits showed mild neurological signs. The epitope-deleted virus replicated efficiently in the olfactory epithelium. However, within the brains of these rabbits there was a 10- to 20-fold reduction in infected neurons compared with the number of infected neurons within the brains of rabbits infected with the gE5 epitope-reverted and wild-type BHV-5. In comparison, 70 to 80{\%} of the rabbits exhibited severe neurological signs when infected with the gE5 epitope-reverted and wild-type BHV-5. These results indicated that anterograde transport of the gE epitope-deleted virus from the olfactory receptor neurons to the olfactory bulb is defective and that, within the central nervous system, the gE5 epitope-coding region was required for expression of the full virulence potential of BHV-5.",
author = "A. Al-Mubarak and Y. Zhou and Chowdhury, {S. I.}",
year = "2004",
month = "5",
day = "1",
doi = "10.1128/JVI.78.9.4806-4816.2004",
language = "English (US)",
volume = "78",
pages = "4806--4816",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "9",

}

TY - JOUR

T1 - A Glycine-Rich Bovine Herpesvirus 5 (BHV-5) gE-Specific Epitope within the Ectodomain Is Important for BHV-5 Neurovirulence

AU - Al-Mubarak, A.

AU - Zhou, Y.

AU - Chowdhury, S. I.

PY - 2004/5/1

Y1 - 2004/5/1

N2 - The bovine herpesvirus 5 (BHV-5) gE ectodomain contains a glycine-rich epitope coding region (gE5 epitope), residues 204 to 218, that is significantly different from the corresponding gE region of BHV-1. Deletion of the gE epitope significantly reduced the neurovirulence of BHV-5 in rabbits. Pulse-chase analyses revealed that the epitope-deleted and wild-type gE were synthesized as N-glycosylated endoglycosidase H-sensitive precursors with approximate molecular masses of 85 kDa and 86 kDa, respectively. Like the wild-type gE, epitope-deleted gE complexed with gI and was readily transported from the endoplasmic reticulum. Concomitantly, the epitope-deleted and wild-type gE acquired posttranslational modifications in the Golgi leading to an increased apparent molecular mass of 93-kDa (epitope-deleted gE) and 94-kDa (wild-type gE). The kinetics of mutant and wild-type gE processing were similar, and both mature proteins were resistant to endoglycosidase H but sensitive to glycopeptidase F. The gE epitope-deleted BHV-5 formed wild-type-sized plaques in MDBK cells, and the epitope-deleted gE was expressed on the cell surface. However, rabbits infected intranasally with gE epitope-deleted BHV-5 did not develop seizures, and only 20% of the infected rabbits showed mild neurological signs. The epitope-deleted virus replicated efficiently in the olfactory epithelium. However, within the brains of these rabbits there was a 10- to 20-fold reduction in infected neurons compared with the number of infected neurons within the brains of rabbits infected with the gE5 epitope-reverted and wild-type BHV-5. In comparison, 70 to 80% of the rabbits exhibited severe neurological signs when infected with the gE5 epitope-reverted and wild-type BHV-5. These results indicated that anterograde transport of the gE epitope-deleted virus from the olfactory receptor neurons to the olfactory bulb is defective and that, within the central nervous system, the gE5 epitope-coding region was required for expression of the full virulence potential of BHV-5.

AB - The bovine herpesvirus 5 (BHV-5) gE ectodomain contains a glycine-rich epitope coding region (gE5 epitope), residues 204 to 218, that is significantly different from the corresponding gE region of BHV-1. Deletion of the gE epitope significantly reduced the neurovirulence of BHV-5 in rabbits. Pulse-chase analyses revealed that the epitope-deleted and wild-type gE were synthesized as N-glycosylated endoglycosidase H-sensitive precursors with approximate molecular masses of 85 kDa and 86 kDa, respectively. Like the wild-type gE, epitope-deleted gE complexed with gI and was readily transported from the endoplasmic reticulum. Concomitantly, the epitope-deleted and wild-type gE acquired posttranslational modifications in the Golgi leading to an increased apparent molecular mass of 93-kDa (epitope-deleted gE) and 94-kDa (wild-type gE). The kinetics of mutant and wild-type gE processing were similar, and both mature proteins were resistant to endoglycosidase H but sensitive to glycopeptidase F. The gE epitope-deleted BHV-5 formed wild-type-sized plaques in MDBK cells, and the epitope-deleted gE was expressed on the cell surface. However, rabbits infected intranasally with gE epitope-deleted BHV-5 did not develop seizures, and only 20% of the infected rabbits showed mild neurological signs. The epitope-deleted virus replicated efficiently in the olfactory epithelium. However, within the brains of these rabbits there was a 10- to 20-fold reduction in infected neurons compared with the number of infected neurons within the brains of rabbits infected with the gE5 epitope-reverted and wild-type BHV-5. In comparison, 70 to 80% of the rabbits exhibited severe neurological signs when infected with the gE5 epitope-reverted and wild-type BHV-5. These results indicated that anterograde transport of the gE epitope-deleted virus from the olfactory receptor neurons to the olfactory bulb is defective and that, within the central nervous system, the gE5 epitope-coding region was required for expression of the full virulence potential of BHV-5.

UR - http://www.scopus.com/inward/record.url?scp=4344714337&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4344714337&partnerID=8YFLogxK

U2 - 10.1128/JVI.78.9.4806-4816.2004

DO - 10.1128/JVI.78.9.4806-4816.2004

M3 - Article

C2 - 15078962

AN - SCOPUS:4344714337

VL - 78

SP - 4806

EP - 4816

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 9

ER -