A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels

Guey Chuen Perng, Barak Maguen, Ling Jin, Kevin R. Mott, Nelson Osorio, Susan M. Slanina, Ada Yukht, Homayon Ghiasi, Anthony B. Nesburn, Melissa Inman, Gail Henderson, Clinton Jones, Steven L. Wechsler

Research output: Contribution to journalArticle

76 Citations (Scopus)

Abstract

After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500-1503, 2000; M. Inman et al., J. Virol. 75:3636-3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT both have antiapoptosis activity. These studies therefore strongly support the hypothesis that replacing LAT with an antiapoptosis gene restores the wild-type reactivation phenotype to a LAT null mutant of HSV-1 McKrae.

Original languageEnglish (US)
Pages (from-to)1224-1235
Number of pages12
JournalJournal of virology
Volume76
Issue number3
DOIs
StatePublished - Jan 1 2002

Fingerprint

Human herpesvirus 1
Human Herpesvirus 1
apoptosis
Apoptosis
Virus Latency
Genes
viruses
genes
Trigeminal Ganglion
Rabbits
Viruses
cattle
rabbits
mice
neurons
Herpetic Keratitis
Phenotype
herpes simplex virus-1 latency associated transcript
Neurons
infection

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this

A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. / Perng, Guey Chuen; Maguen, Barak; Jin, Ling; Mott, Kevin R.; Osorio, Nelson; Slanina, Susan M.; Yukht, Ada; Ghiasi, Homayon; Nesburn, Anthony B.; Inman, Melissa; Henderson, Gail; Jones, Clinton; Wechsler, Steven L.

In: Journal of virology, Vol. 76, No. 3, 01.01.2002, p. 1224-1235.

Research output: Contribution to journalArticle

Perng, GC, Maguen, B, Jin, L, Mott, KR, Osorio, N, Slanina, SM, Yukht, A, Ghiasi, H, Nesburn, AB, Inman, M, Henderson, G, Jones, C & Wechsler, SL 2002, 'A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels', Journal of virology, vol. 76, no. 3, pp. 1224-1235. https://doi.org/10.1128/JVI.76.3.1224-1235.2002
Perng, Guey Chuen ; Maguen, Barak ; Jin, Ling ; Mott, Kevin R. ; Osorio, Nelson ; Slanina, Susan M. ; Yukht, Ada ; Ghiasi, Homayon ; Nesburn, Anthony B. ; Inman, Melissa ; Henderson, Gail ; Jones, Clinton ; Wechsler, Steven L. / A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels. In: Journal of virology. 2002 ; Vol. 76, No. 3. pp. 1224-1235.
@article{cb58e77fded34e3baa94b5f92d07d3e7,
title = "A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels",
abstract = "After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500-1503, 2000; M. Inman et al., J. Virol. 75:3636-3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT both have antiapoptosis activity. These studies therefore strongly support the hypothesis that replacing LAT with an antiapoptosis gene restores the wild-type reactivation phenotype to a LAT null mutant of HSV-1 McKrae.",
author = "Perng, {Guey Chuen} and Barak Maguen and Ling Jin and Mott, {Kevin R.} and Nelson Osorio and Slanina, {Susan M.} and Ada Yukht and Homayon Ghiasi and Nesburn, {Anthony B.} and Melissa Inman and Gail Henderson and Clinton Jones and Wechsler, {Steven L.}",
year = "2002",
month = "1",
day = "1",
doi = "10.1128/JVI.76.3.1224-1235.2002",
language = "English (US)",
volume = "76",
pages = "1224--1235",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "3",

}

TY - JOUR

T1 - A gene capable of blocking apoptosis can substitute for the herpes simplex virus type 1 latency-associated transcript gene and restore wild-type reactivation levels

AU - Perng, Guey Chuen

AU - Maguen, Barak

AU - Jin, Ling

AU - Mott, Kevin R.

AU - Osorio, Nelson

AU - Slanina, Susan M.

AU - Yukht, Ada

AU - Ghiasi, Homayon

AU - Nesburn, Anthony B.

AU - Inman, Melissa

AU - Henderson, Gail

AU - Jones, Clinton

AU - Wechsler, Steven L.

PY - 2002/1/1

Y1 - 2002/1/1

N2 - After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500-1503, 2000; M. Inman et al., J. Virol. 75:3636-3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT both have antiapoptosis activity. These studies therefore strongly support the hypothesis that replacing LAT with an antiapoptosis gene restores the wild-type reactivation phenotype to a LAT null mutant of HSV-1 McKrae.

AB - After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500-1503, 2000; M. Inman et al., J. Virol. 75:3636-3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT both have antiapoptosis activity. These studies therefore strongly support the hypothesis that replacing LAT with an antiapoptosis gene restores the wild-type reactivation phenotype to a LAT null mutant of HSV-1 McKrae.

UR - http://www.scopus.com/inward/record.url?scp=0036145527&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036145527&partnerID=8YFLogxK

U2 - 10.1128/JVI.76.3.1224-1235.2002

DO - 10.1128/JVI.76.3.1224-1235.2002

M3 - Article

C2 - 11773398

AN - SCOPUS:0036145527

VL - 76

SP - 1224

EP - 1235

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 3

ER -