Transcriptional Regulation, the Nuclear Proteome, and HIV/Meth/cART: From Profili

Project: Research project

Description

DESCRIPTION (provided by applicant): HIV-1 infection and drug of abuse have devastating effects on function of the entire organism. The macrophage is the prime member of the mononuclear phagocyte class of cells and a key part of innate immunity system. Because the macrophage is also a target of HIV, a reservoir of productive viral infection and a vehicle to spread infection to organs including the brain, its impact on the course of disease is central. The complexity of HIV infection is further complicated and intensified by use of drugs of abuse. Methamphetamine (METH) was chosen since it is a drug with increasing popularity among the drug-abusing population and used by those with, or at risk for, HIV. Treatment of these individuals is a very complex process because it has to target two entities that are quite different in nature. In addition, life-long cART treatment of HIV infection has adverse toxic effects. As two main avenues of Systems Biology, global profiling techniques and computational processing of large data sets, mature, it becomes feasible to start analyzing data from multivariate experiments (HIV/METH/cART). Prior reductionist approaches precluded performing experiments at this level of complexity. Moreover, despite substantive research efforts, the broad picture of molecular mechanisms underlying functions of macrophages in the complex environment of HIV-1 infection METH use and/or cART is far from being understood. Summarizing, we hypothesize that the systems biology approach will provide unique information which will lead to identification of new paradigm how the human macrophage is regulated in the complex environment of HIV infection, cART and METH. We expect that our experimental plan, examining transcription factors and other nuclear proteins through the use of omic techniques, computational biology and bioinformatic analyses, will provide unique information which will lead to identification of new paradigms in how the human macrophage is regulated in the complex environment of HIV infection, cART and METH. PUBLIC HEALTH RELEVANCE: The transformation of HIV to a chronic disease represents a great success of therapy but has opened up a number of new clinical problems due to the long-term infection, effects of the anti-retroviral therapies, and coexisting factors such as drug abuse which affects many systems including the brain and cardiovascular systems. Macrophages, key component of immune system, play many roles in persistence of infection as well as disease causation. We propose to use a global approach to investigate the effects of HIV infection, drug abuse and anti-retroviral therapy on macrophage which should lead us to better understand molecular mechanisms of disease and propose new targets for therapy.
StatusFinished
Effective start/end date9/17/106/30/16

Funding

  • National Institutes of Health: $586,474.00
  • National Institutes of Health: $655,614.00
  • National Institutes of Health: $599,685.00
  • National Institutes of Health: $623,113.00
  • National Institutes of Health: $635,570.00

Fingerprint

Proteome
HIV Infections
Methamphetamine
HIV
Macrophages
Systems Biology
Street Drugs
HIV-1
Computational Biology
Poisons
Virus Diseases
Phagocytes
Nuclear Proteins
Pharmaceutical Preparations
Infection
Transcription Factors
Brain
Substance-Related Disorders
Research
Population

ASJC

  • Medicine(all)