Development of Theranostic Ultrasound

Project: Research project

Description

DESCRIPTION (provided by applicant): High mechanical index impulses from a diagnostic ultrasound system have been utilized in small animal models to efficiently enhance thrombolysis in the presence of intravenously infused microbubbles. These high acoustic pressures induce inertial cavitation (IC) of the microbubbles, which may also cause unwanted bioeffects such as hemorrhage, cell death, and cardiac arrhythmias when using transthoracic impulses. At a lower mechanical index (MI), lower to moderate levels of IC as well as high levels of stable cavitation (SC) of microbubbles are induced which may produce equivalent thrombus dissolution as that achieved with high IC levels, but without unwanted bioeffects. Unfortunately, there are no methods by which one can monitor the type, or level, of cavitation within a region of interest. It s the central hypothesis of this project that the different forms and levels of cavitation can be detected and monitored with a feedback cavitation detection system (FCDS). When combined with image-guided ultrasound, we postulate that the dynamic assessment of cavitation signals will permit one to identify what is required for optimal thrombus dissolution both within medium sized vessels as well as the microvasculature. To correctly identify feedback, we predict that the response of the cavitating microbubble in the treatment region can be inferred from the non-linear acoustic signature of the local bubble response signals that return to the interrogating transducer, and that the local bubble response signature, in turn, can be used to adjust the transmitted ultrasound energy to compensate for attenuation, ensuring the energy delivered at the site of the desired bioeffect. We further postulate that the transmit amplitude required to achieve the desired level of cavitation will be different at microvascular level when compared to a medium-sized vessel. To test this hypothesis, a FCDS has been developed which can image microbubbles, apply therapeutic impulses, and correctly provide real time feedback as to whether the transmitted impulses are producing different forms of SC (non-destructive and destructive) versus IC. After validating its discriminative ability, the theranostic system will be
tested during a microbubble infusion with an ex vivo model of normal microvasculature. Following this, microvascular and vascular thrombi will be created where varying levels of attenuation are created with tissue mimicking phantoms to mimick transthoracic and transcranial attenuation. In these models, we will determine a) whether the FCDS can still identify and effectively monitor the desired cavitation response; and b) the degree of thrombus dissolution achieved when either a consistent IC or SC feedback is achieved. The impact of such a non-invasive therapeutic tool will be significant, as development of a FCDS to non-invasively treat acute ischemic stroke and acute myocardial infarction would lead to more rapid treatment of these two disease entities, which remain the leading causes of death and disability in the world. The developed FCDS would also permit a cost-effective, safe, and immediate treatment that could potentially be initiated at the point of patient contact.
StatusFinished
Effective start/end date2/1/131/31/16

Funding

  • National Institutes of Health: $230,295.00
  • National Institutes of Health: $145,985.00

Fingerprint

cavitation flow
impulses
dissolving
attenuation
axioms
death
vessels
bubbles
signatures
myocardial infarction
arrhythmia
disabilities
hemorrhages
animal models
acoustics
causes
strokes

ASJC

  • Engineering(all)
  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)